
UCRL-JC-134160 
PREPRINT 

Coupling Various Methods for 
Convection-Diffusion Problems with 

Applications to Flows in Porous Media 

R.D. Lazarov 
J.E. Pasciak 

P.S. Vassilevski 

This paper was prepared for submittal to the 
Second Workshop on ‘Large-Scale Scientific Computations” 

Sozopol, Bulgaria 
June 2-6,1999 

May 6,1999 

This is a preprint of a paper intended for publication in a journal or proceedings. 
Since changes may be made before publication, this preprint is made available wit 
the understanding that it will not be cited or reproduced without the permission of the 
author. 

. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



ISC Texas A&M University CASC LLNL 

Coupling Various Methods for 
Convection-Diffusion Problems 
with Applications to Flows in 

Porous Media 

R.D. Lazarov *, J.E. Pasciak, and P.S. VassiIevski* 

Large Scale Scientific Computations, 

Sozopol, Bulgaria, June 2 - 6, 1999 

*Work performed under the auspices of the U.S. Department of Energy 

by Lawrence Livermore National Laboratory under Contract 

W-7405-Enq-48 



ISC Texas A&M University CASC LLNL 

IOutline of the presentation 1 
1. Introductio 

2. Corn ~rrn~l~ti~~~ 
2.1. Coupling Mixed & Galerkin Formulations 

2.2. Coupling Mixed & Mixed Formulations 

3 * iscretiz 
3.1. Coupling Mixed FE & Galerkin FE 

3.2. Coupling Mixed FE & Finite Volumes 

3.3. Coupling Mixed FE & Mixed FE 

3.4. Coupling Finite Volume & Finite Volumes 

4. Iter s 
4.1. Preconditioning of the Saddle-point System 

4.2. Iterative Solution of the Reduced System 

5. Numerica xperiments 

Lazarov, Pasciak, Vassilevski, Sozopol, June 4, 99 Slide 2 



ISC Texas A&M University CASC LLNL 

1. Introduction 
We consider the model convection-diffusion prob- 
lem: given f E H-l(R), u = a(z) s.p.d. matrix, 
find p f H1(n> s.t. 

-V 9 aVp + Cp = f(x), x E Q, 
where Cp 

= 7 l (Pb) + cop, x E Q, 

P(z) = 0, x E x-2. 

Here R is a polygonal domain in Rd, with d = 2,3, 
the coefficients CO(X) and b = b(x) = (bl, ... ,bd) - 
satisfy: 

1 
co(x) + 2V l b(x) > yo = const > 0, - x E R. 

If b(x) E 0 then we can have 70 = 0 This guarantees 
the coercivity of the problem and the existence of 
its solution in @(n>. 
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Applications: 

(1) heat and mass transfer; 
(2) duffusion-reaction processes: b = 0; 
(3) flow in porous media: b = 0, CO = 0; 
(4) transport in porous media: b - given. - 

Example: bioscreen model. 

Partition R into RI and R2 with an interface r. 

(1) In RI we can use: 
(a) Mixed Method, or (b) Finite Volumes, 

(2) In R2 we can use one of: 
(a) Galerkin FEM; (b) FV; (c) Mixed FEM. 
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We shall consider as a mode 
doamain R is split into two 
common interface r, i.e. R 

2. Composite Foi rmulations 

1 situation when the 
subdomains with a 
= R1 u r u Q2. In 
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each subdomain we shall consider a separate for- 
mulation of the original problem. 

Most of the methods extend to many subdomains. 
However, we have not studied the dependence of 
the parameters in the equivalence and a priori es- 
timates on the number of the subdomains. 

. 
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2.1. Coupling Mixed and Galerkin 

Methods 

In RI we use mixed formulation, while in R2 we 
shall use standard Galerkin weak fromulation. 

In the mixed setting we introduce a new variable - 
velocity/flux: u = --aVp. To distinguish between 
the problem formulations we write 

Pl =pln, and P2 =PlQz- 

Different smoothness requirements on the compo- 
nents u, p1 and p2 are imposed, namely 
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Further, we shall us the standard notations for the 
Sobolev spaces for i = 1,2: 

In the inner product (or corresponding pairing) we 
shall skip the indexation by subdomain, i.e. 

( vi, Wi)Ri f (Vi, Wi) = 
J’ Qi 

vi w; dx. 

And finally, by < .,. > we shall denote the duality 
pairing between Hli2 o. (r) and H-1/2(r) or simply 
the L2-inner product on functions defined on r, 
i.e. 
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The weak composite formulation for the case of 
pure diffusion (i.e. &I(X) E 0 and CO(X) E 0), which 1 
is a basis for the finite element method, is: find 

( cL-1u, v) - (~1, V - v)+ < 132, v - nl > 

- 
(v l UT  4) 

<u-l, $J> 

for all 

= 0, 

= m7% 

= (K $4, 

Remark 1. Note that this weak formulation does 
not involve Lagrange multipliers. 
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Theorem 1, The following a pviori estimate is 
valid: 

llUIIH(div, n,) +llP1lIo, RI + llP2lll,R* F 

c { llfll~, RI + IISII-I,**) l 

The proof usses the well-known inf-sup condition 

PllPl II0 L sup (PI, 0-v) 
vEH(div, n,) //V//H(div, n,)’ 
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The case of convection-diffusion problems is much 
more complicated. 

To describe the weak form of the equation 

77 - u + v  l @PI) + COP1 = f(x), x E Q1, 

which is suitable for FE method, we shall need to 
allow for discontinuous functions p1 from 

HI&WI> = 
VI E L2(Ql) : 3 partition IC 

S.-t. vllK f H1(K),‘dK E IC ’ 

The functions in H,&(Ql) have traces from both 
sides of the interfaces of the. subdomains IS. For 
pl E H,&(Q) we denote these traces by p? and pi, 
where “0" stands for the outward (with respect to 
K) trace and “2’ - the interior trace. 
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For any EC E ?C the advection-reaction operator Cpl 
contributes: 

CdPl, WI) = .I K 
w @PI) +aoWPd WldX 

+ LK-( 
p? - pi) wi b l n ds, 

where r- = {x~r: b(x) . r-q < 0} is inflow, 
r+={~Er: b(x) . nl > 0} is outflow boundary. - 

We integrate by parts in each K and sum for K E PC. 

For Pl,Wl E Hll,,W1>: 

c(P1d-d = 

= (-/‘N 
p1b-q dx+ 

s dK- 
pTwi&nds 

+s K 
aok Pl'LOldx+ s aK+ 

pi wi b l n ds . 
> 

Note, that this from is defined for both continuous 
and discontinuous with respect to K functions. 
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If the subdomain K has a side/face on r- then the 
trace py should be replaced it by its counterpart 
from R2, namely by pz(x). Also on L we have 

W”1 = WI and on X21-\L we take py = 0. We get 
the following weak form of the second equation for 
all WI E H&$21): 

- w l wu) - ~ll(P1, WI) - a12cp21 WI) 

= -cf,wdJ WI f w 

Here 

m(Pl, WI) = - Plb. ~u-ox+ (COP17 WI) 

[(b l n&p; i- (b l nl)+p(l wids 

a12(p2, WI) = Jr- P2b-9 WI64 b l ni d% 

where for a given function t(x) we have defined 
t- = min(O,t) and t+ = max(O,t). 
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Testing the original equation by a function ~2 E 

Hi(R2; dR2\r), using the zero boundary condition 
for ~2 on dRz\r, and the fact u=nl = --aVpl=nl = 
dp2. n2 on r we get: 

< u l nl, q > -(aVp2, Vw2) 

-w l @P2)92) - (CoP2+2) = -CL W2)i 

for all ~2 E H@2 2; X22 \ r). To account for the 
“inflow” boundary r+ we need term Jr+plw2 b - 

n2 ds. We get it by adding it to the equation and 
subtracting its equal - Jr+p2w2 b l nl ds since on r 
we have p1 =p2. 

We get the following form of the last equation: 

< u l n17 w2 > -a21(Pl, w2) - a22(p2,w2) = -(.f, w2), 

for all ~2 E H.$(R2). 
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Summarizing, we have the following composite system: find 

1 
u E HWV; Qlj, Pl E qgn1>, p2 E H,'(Q,) 

( a-lu, v) - (2%~ 4 + <p2,v-n1 > 

- Ww-e) - adPi,wi) - ai2(p2,w) 

<U-ni,w2 > --a2&,w2)--22(p2,~2) 

= 0; 

= -(f, wj, 
= -(f, W2)> 

\ 

for all 

where the bilinear forms are defined as: 

dpl, WI> 

a12(p2, w> 

a21(Pl, w2) 

a22(p2, 9112) 

- - 
PI b-w dx+ (CopI, WI) 

- - J 132 WI b-1 ds, 
r- 

- - 
.I 

p1 w2 b T n2 ds, 
r+ 

= (aQ2, vw2) + (a . (b2), w2) 

t-(CoP2, w2j + 
s 

p2 w2 b- nl ds. 
r- 
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The stability- of this problem is in much weaker 
sense. Namely, we have: 

Theorem 2. The solution of the composite prob- 
lem exists and satisfies the following a priori esti- 
mate: 

JIUIIL2(Q~) + llPlI/*, RI + IlP2ll*$22 L mfllo, Q ’ 
where 

II II 2 Vl *;Q1 +l17J211:>*2 = 

; c /[v1121 - 

eEl0 * e 
b l n1l ds + YOll”lll&&+ 

1 ’ 
2 r(211--v2)21b-nl/ ds+ 

.i 

WV27 vv2) + Y0/1~2ll~,*, 
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Take stable mixed pairs of spaces: Vi = H(div,Ri), 

w = L2(Qi), i = 1,2, and A2 = f#*(r). 

The combined mixed/mixed formulation is: find 

/ (W,Pl) E Vl x Wl; (W,P2) E v2 x w2, x2 E A2 

m(w,vl) - (PI, IT)+ < X271 - nl > = oj Vl E Vl: 

- w-w, a) = cfh):cll E Wl, 

a:!(u2, V2)- (p2j v'V2)+ < X272 *n2 > = oj v2 E v2> 

- w-2, d = (f,q2)7 q2 E W2? 

~<~2.n2,~2>+<ul.n1~~2> = 0, p2 E A2. 

Here X2 plays a role of a Lagrange multiplier and 

ai(ui, vi) = 
J’ R; 

cC1(x)ui - vidx, i = 1,2. 
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2.3. Hybrid Formulation 

This formulation is good for coupling two Galerkin 
FEMs, Galerkin FEM and FVM, and FVM with 
FVMs. We show it on two subdomains (the case 
of many subdomains has been studied by Ewing, 
L. Lin, and Lin). 

First we denote by 

ffi(Ri) = {Vi E P(c2i) : v,Iqr = o}. z 
The space X and its norm are defined as: 

x = H,1ew x ftm2L ll~ll$ = 11q1: Q + 119/11:$-) - , 1 , 2 

The space IS@) can be characterized by 

H;(R)=(VEX: < Vi - V2, 4 >r= 0, ‘J+ E ff&1’2(i-)}. 
Now we define the bilinear from CL* : X x X -+ 5%: 

a*(v,w) = a(x)Vvi - VW~ dx. 
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Thus the primal hybrid formulation is: find 

such that 

/ 
a*(P,d+ < ~l-Y*,~ > = (.fjP), b E x, 

i 

-- 

<PI -P*,& > = 0, ‘~'4 E fsoo:(r). I 

One has the following result: 

Theorem 3. The hybrid problem has unique solu- 
: -- 

tion (p,$) E X x No0 (I-) and p is a solution to the 
original problem. Moreover, $J = d7pi l ni, i = 1,2 
and 

IIPIIX + ll”‘ii+- 5 ciifllo,n 
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3. Discretization Methods 

We introduce independent triangulations ‘7-1 and 
‘I5 of the domains RI and R2 so they do not nec- 
essarily match along r and use different method in 
each of them. Why blending different methods 2 
1. Independent meshing in the subdomains for 
practical reasons; 
2. Better or more appropriate approximation by 
different methods; 
3. Necessity of gluing together already existing 
implementations. 

For example, FVE method has a large variety of 
up-winding and stabilizing techniques for convection- 
diffusion problems, while mixed FEM has local 
conservation properties and superconvergent ap- 
proximation. 
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We take (V, WI) to be a stable pair of mixed fi- 
nite element spaces: R-T, B-D-M, B-F-D-M, etc. 
Then the mixed FEM on RI will involve uh E V 
and p1 h E WI. 7 

For the problem in R2 we can apply: 

(1) Standard Finite Element Approximation; 
(Wieners and WohImuth’98, L.P.V.‘99) 

Finite Volume Element Approximation; 
Pascia k, and VassiIevski’99) 

Mixed Finite Element Approximation. 
(Arbogast, Cowsar, Yotov, Wheeler’9698, and L. 
Pascia k, Vassievski’99). 
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The first two methods have similar formulations: 

(1) The FE as Galerkin method with solution and 
test spaces of conforming linear elements; 
(2) The FVE as Petrov-Galerkin method with a 
solution space of conforming linear FE and a test 
space of piecewise constants over a partition of the 
domain into finite volumes. 

The mixed/mixed FE approximation requires La- 
grange multipliers on the interface r. 

All these approximations are stable in an appropri- 
ate norm and preconditioning based on Dirichlet- 
Neumann and Neumann-Dirichlet maps can be ap- 
plied. 
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3.1. Coupling Mixed FE & Galerkin FEM 

The solution space W2 is the standard conforming 
space of piece-wise linear functions over 75 Then 
the approximation for the pure difhsion problem 
reads: find 

f 
Uh e v, Pl,h E Wl7 and P2,h f W2 s.t. : 

( a-l,h,xl - (P1,h.t - v-x)+ < P2J~,x'nl > = 0, _ - 
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This approximation was introduced by 
- Wieners and Wohlmuth, 98, 
- L., Pasciak, and Vassilevski, 99 proposed and 
studied several iterative methods based on: 

(1) presentation of the system in block form as: 

A= [~; II; AU=F, UEX 

where X = Vh x W2 x WI and A: X -+X and 

(2) using Poincar&StekIov operators (Neumann- 
Dirichlet and Dirichlet-Neumann maps for the in- 
terface data). 

Lazarov, Pasciak, Vassilevski, Sozopol, June 4, 99 Slide 22 



ISC Texas A&M University CASC LLNL 

3.2. Mixed FE/FV Approximation 

The finite volume approximation will be understood 
as Petrov-Galerkin method. For this we need also 
the test space denoted by W; associated with the 
“triangulation” 7-T of 02 into finite (control) vol- 
umes. 

. 

Then W; is the space of the piece-wise constant 
functions over the volumes from ‘KS. 
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The ballance equation over a volume V(X) E 7; is: 

- J aV 
aUv2 . nds = J V 

fdx, v2 E w2. 

Introduce the form a2 &u,$J*) for v e T/y2, $J* E MC& > 

a2,hbb +*> = - c @ *cd Jbr/c,) ah - n ds* 
X 

Then the MFE/FV approximation is: find 

( a-luh, v> - (PI& v * v>+ < I&&h, v * nl >= 0, 
- 

(u l U/2> 41 = UT 4>, 
< utl,*nl,?,b* > - a2,h(P2,lzd*) = (Fd’“)~ 

\ for all v E V, q5 E W& $J* E W ;. / 

Here Ii : W2 - W t is a piece-wise constant in- 
terpolation operator. 
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Remark. To see in what sense the coupling pro- 
vides continuity of the approximate presssure and 
the flux at the interface we need ‘to define these 
quantities on r. 
(1) A reasonable approximation of the flux/velocity 
ov.er each FE in R2 is -aVp2,h. Then p2,h satisfies: 

< ab2 h - nl, $‘* >I- +“2,&2,h, +*) = (f~ +*I > 

for +* E W$ Thus, the continuity of the flux across 
r is imposed in the following weak sense: 

(2) The continuity of the pressure is more compli- 
cated. Notice that in the mixed side the pressure 
is discontinuous across the FE interfaces. In gen- 
eral, the degrees of freedom are the medicenters 
of the FEs. In order to compute the pressure at 
a FE edge we need Taylor expansion by using the 
approximations of p and u. 
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Another possibility is: find 

’ Uh E v, PI h E WI, p2 h c @‘3 such that \ 
:, 7 

( 
- 

a 1,12,v) - bl,h,v -v>+ < ?32,f~,V -1 >= 0, 

- 
(u l uh, 4) = u-w), 

< Uh.nlJf&" > -a2,h(P2J~, +*> = (F, $*>? 

(if v E v, qb ct WI, ?/!J* E w;. 
_/ 

Here Ih : ws w wh is a piece-wise linear interpo- 
lation operator. This is NOT locally conservative 
at the cells adjacent to r. 
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Theorem 4. The presented above approximations 
are stable and optimal with respect to the rate of 
convergence and regularity of the solution. Namely, 
the following error estimate is valid: 

+llP2 - m ,hii l,h,R;, 5 

c plllUlll,R~ + hllP2I/l;R~ + h2llP2ll2,RJ 
f 

with a constant C independent of h. 
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3.3. Mixed & Mixed Discretizations 

We take stable mixed pairs of spaces (Vl,Wl) and 
(V,, W2) in 521 and R 2, respectively. Next, we take 
A2 c I!@-) a conforming FE space. 

Then the combined mixed/mixed FEM is: find 

/ bl,Pl) E VI x -5 (u2;p2) E v2 x w2, x2 E A2 

dW,Vi) - (pi, VT)+ < X271 - nl > = 0, v1 E Vl: 
- 

(-Q, 41) = md, 41 E M/1, 

fJ2(l12j v2) - (pa V.v2)+ < X272 - n2 > = 0; v2 E v2; 
- w-2, q2) = o-Q2)? q2 E w2, 

\ <u=!.n2,~2>+<ul.n1,~2> = 0, p2 E A2. 

Here X2 plays a role of a Lagrange multiplier and 

ai(ui, vi) =. J Qi a-‘(x)ui l vidx, i = 1,2. 
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3.4. Coupling FV/FV Approximation 

We need to formulate the finite element (solu- 
tion) and finte volume (test) spaces for this set- 
ting. Since each doamin has its own triangulation 
we introduce the finite element approximation XI, 
of x = H,l(~,>xI-r,l(~2~~ 

Xh = {Vi c c(n,)nH,l(fl,) : vile E P-r(T), b’T E x}. 

In fact, we have that XI, f WI x W2, where Wi is the 
conforming finite element spaces in Ri, i = 1,2. 

Next, we define the FE space for the Lagrange mul- 
tipliers. We shall choose it in the simplst poosible 
way, as the space of the traces of the functions 
from WI modified at the end points, i.e. 

i 

4 E C(r) : 4 is linear on 71 and is a 
n/l,, = . 

constant at end intervals 
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We introduce 

(mP,q*) = ) a1 h(P1, QT)+a2 h(P2, &, VP E Vh, q* f x;. I 

The mortar finte volume element method is: 
find ph = (~l,h.d32,h) E xh and +h E n4h s-t- 

(1) locally non-conservative along r: 

uFv(ph~l&)$. < 41 - 42&h > = (f, I;(r), vq E Xh 

< PlJ2 - P2,hT (8 > =o, bQJ5EAffL. 

(2) locally conservative scheme: 
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The following result is a particular case of the many 
subdomains (i > 2) of Ewing, L., Lin, and Lin, 99: 

Theorem 5. If Ipi E H ‘fTi(Ri), with 0 < 7-i 2 1, i = 
1,2 then the solution of the mortar FVM satisfies 
the error estimate: 

I/P - Ph//X +ll+ - $hl)_L r 
2’ 

< c c @~llPil/1;R, + ~iIlfl/O ;c2J - 
i=1,2 

with a constant C independent of h. 

Note that this theorem quarantees the convergence 
of the Lagrange multipiers (which have meaning of 
the fluxes accross r) in the negative l/2-norm. 
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4. Iterative solution of the composite 
saddle-point problem 

We consider coupling of mixed and Galerkin meth- 
ods. Other coupled discretizations use the same 
construction. Let 2 denote the product space 
vh, x w2 x M/1 and consider the Operator A : X -+ X 
given by 

Al 
A= 1 -T 

N 

WlX,!?) = ((+x7@> - - 

(Nx,wd = WTw,x) - - 

(T&W2) = VTw2,x) - 

642v2,w2) = d'U292) 

T’ NT 
A2 0 

0 0 1 . 
-1 

for all x,6) E V, - 

=-(v*&Wd 
for all x E V, WI E Wl, - 

=b2,Xeni)r 
for all-x c V, ~2 E W2, 

f (ab2,Vw2) 

for all VP,W~ f W2. 
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4.1. Direct preconditioning of the 
saddle-point system . 

We take the block diagonal operator 

where (AX, 19) = 
x, @EV. - 

(a-lx, S) + (V . x, V l @) for all - 
- 

By the stability of the saddle-point system, 

L ~llll~lIl~7 

for any U E X. Here III . IlID = ;D.,o)1/2 and (*,*) 
denotes the inner-product in the product space X. 
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4.2. Iterative solution of the reduced Mixed FE/FVM 
problem 

This applies to all combinations: mixed - standard Galerkin, 
mixed - finite volume, and mixed - mixed. The technique is 
based on Dirichiet-Neumann and Neumann-Dirichlet maps. 

1. Elimination Procedure: solve two independent problems; 
(a) the mixed problem in 01: 

( a-lu;, v) -(P$pV) = 0, v E v, , 
- w-u;, 41) = -(fm>, 41 E Wl. 

On r we have homogeneous Dirichlet data for pyh. 7 

(b) the standard FVM in R2: 

a*,h(?‘;,,v 42) = (f,q2), q2 E w;. 

Here on r we have homogeneous Neumann data for P:~. , 

2. Iteration Procedure: the differences ^uh = uh - U: and 
i%,h = pi - pFh sat’ IS y f f I or v E V, q1 E WI and q; E W;: 

( a-1Gh7 v> - 61 h, v-V)+ < Iigz,h, V . nl > 

(V’Gh, 41) ' 

= - < 12~: h,~ . nl > 7 , 
= 0. 

< Gh * nl, 4; > +a2,h($-2,h, 4;) =-<u+l,q$>. 
(1) 
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Define the trace space of FE space W2 on F: A2 = W2]r. 

We introduce the maps (called often Poincare-Steklov): 

1. the Dirichlet-Neumann map ,!31 : A2 I+ Vn&, defined 
for any X2 E A2 as the normal trace w&2]. nl of the mixed 
FE solution w&2], i.e. El& = w&42] .n&, where 

( a+qJX2], v) - (pi,h[X2], 0-v) = - < IlX2, v - nl >, v E v, 

07'Wd~21, a> = 0, 41 E Wl. 

2. the Neumann-Dirichlet map S2 : L2(r) I-+ A2 defined 
for any A* E L2(F) as S2X* E X2 = P~,~[X*]~~ obtained by the 
FVE method: 

~2,dP2,hC~*l, q&72) =< x*,qq2 A q2 E w2. 

In terms of the operators 231 and S2 one can rewrite the 
coupled system (1) in the form: if A* = -11:. u, then 

i&, - nl = &X2, 

x2 = S&A” - iih - nl) = S&i* - 231X2). 

Then, the reduced system reads: 

(I -j- &S2)6h - nl = ElS2X*. (2) 
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Now we define the extension %$I;] for any XT E A; = V - n&, 
obtained by solving the problem 

! 
( a-lic~ [A;]) v) -(pl,&T], V-v) = 0, v E V, v - nl = 0, 

4’c7%h[~~1, a> = 0, 41E W l 

%$$I - nl = XT. I 

Consider the H-i/2-equivalent on A; inner product, 

Theorem 6. The reduced problem (2) is well conditioned in 
this inner product. Namely, the following estimates hold: 

< &!?2&.47 >* = (32 h(P2 hLq, ~;P2,ILcq) > 0 > I 

and 

< ElS2-344 >* = a2JdP2,h Pql7 I;P2,h [&I > 

< cllP2,dq IIl,R, IlP2;&41 l/w, - 

I CIPT II-i/2pllls*1 II-i/2,rs 
These estimates guarantee that the preconditioned MINRES 

in the inner product < .,+ >* will have optimal convergence 
rates. 
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4.3. Iterative solution of the reduced Mixed/Mixed FE 
problem 

1. Elimination Procedure: solve two independent mixed prob- 
lems; 

Ul($, Vl) -(PY, v*v1) = 0, Vl E Vl, 

- 07 -uy, 41 > = -(fl,crl>, 41 E Wl. 

a2($, v2) -<P& v.v2) = 0, v2 E v2, 

- (\J 4, q2 > = +2,s2>, q2 E w2. 

2. Iteration Procedure: the difference Gi = ui - up and p^i = 
pi-p: and X 2 satisfy the homogeneous problems, 

al(G, VI>- &, O-v>+ < X2, VI -1 > = 0, Vl E Vl, 

- (.=h, 41) = 0, 41 E M/1. 

(4) 

a2@2, V2) -G2, VYz)+ <X2, v2sn2 > = 0, v2 E v2, 

- (0.62, q2) = 0, (22 E w2, 

< fi2.n2, p2 > + < i&al, p2 > =< A*, p2 >, p2 E A2. 

(5) 

Here, A* = -u! s n2 - uy. 3x1. 
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Introduce: 
1. Dirichlet-Neumann map El : A2 I++ VI -nl/y, 

defined for any X2 E A2 as the normal trace of the 
solution w&2] of the mixed 

Q;l(Wl[X21, Vl) -(P1[X2], WV ‘1 

-w-w[X2], q1) 

problem 

> 
- - - < X2,vl -nl >, 

Vl E Vl, 

= 0, 41 E Wl : 

2. Neumann-Dirichlet map S2 : E&(r) ++ A2 
defined for any A* E H-:(r) 

as the solution A&*] of the hybrid mixed problem, 

u2(w2) v2) - (P2, v*V2)+ < A2[X*], v2. n2 > = 0, v2 E V2, 

- ww2, q2) = 0, a E w2, 

< w2 - n2, I_G~ > =- A*, p_L=! >, 
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In terms of the operators El and S2 one can rewrite 
the coupled system (4)-(5) as follows: 

i&nl =&X2, 

x2 = ,52(X* - 61 - q) = S&I* - E&). 

That is, the reduced system reads: 

(I + S2E1)X2 = S2X*. (6) 
Another reduction is also possible; namely, one has: 

(I + EpS’2)ii1 l nl = E~S;IX*. (7) 
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Consider now the extension %$I;] for any AT E 
/\T = VI . nllr, obtained by solving the problem 

f ~l(~l[ql, Vl> -(Pl[ql7 v-w) = 0, Vl E v-1, 

vl- nl = 0, 

= 0, Q1-h 

Consider the H-i/2-equivalent inner product, 

Theorem 7. Then the reduced problem (7) is 
symmetric and positive definite in the < l ,= >*- 
inner product. And the following spectral equiva- 
lence estimates hold: 

< (1 +const) < pT,p;l h, p$ E AT- - 
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Next we define the inner product, 

< x2, L-42 >**= a2@2[X21, *2h21>, 

where for a given 02 E A2, S&92] is the “mixed 
harmonic extension” of 02, i.e. it is the solution of 
the mixed problem, 

L 

a2@2P21T V2) - (P2P21, v*v2) = - < 02, v2 en2 >, 1 

V2EV27 I 
07-w2P21, 42) = 0, q2 E w2. ~ 

Theorem 8. The reduced problem (6) is well- 
conditioned in this inner product. More specifically, 
the operator I + S2E~ is a symmetric, uniformly 
positive definite and uniformly bounded operator 
in the < ., . >++-inner product. 
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5. Numerical Experiments 

Test example: 

the domain is R = R1 u r u Q2, where R1 = 
(0,l) x (0, l), r = {(IJJ), 0 < y < b}, b < 1 is a 
given parameter, and R2 = (1,l + b) x (O,b). I 

the elliptic problem in 521 is -V . a1Vpl = fl, 
where the coefficient matrix 

al = 
i 

1+ 10X2 + y2 
$ + X2 + Y2 

; + X2 + Y2 
1+x2+10y2 ; 1 

the exact solution ispl(~,y) = (1-x)~x(~-ZJ)ZJ, 
hence u = -alVpl. 

the elliptic problem in R2 is --Ap2 = f2, where 
the coefficient matrix is just the identity, i.e. 

a2 = I, and the exact solution is ~~(x,zJ) = 
105(1+ b - x)(x - 1)2y(b - y). 
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5.1. Mixed & standard Galerkin tests 

We used the following solution methods: 

1. the MINRES (minimum residual method) with 
with the block-diagonal preconditioner 

2. CG method applied to the reduced problem 

u+S2w42,h = S2(4+1 -&P&J 

The stopping criterion: until the relative residual is 
reduced by a factor of lo-% 
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Error and iteration counts for b = 0.55. 

hl = l/16 
h2 = b/16 

3.18e-2 
0.5749 
0.3617 
0.3792 
0.1519 

hl = l/32 hl = l/64 hl = l/128 
h2 = b/32 h2 = b/64 h2 = b/128 

7.57e-3 1.83e-3 4.57e-4 
0.1343 3.27e-2 7.87e-3 
8.87e-2 2.21e-2 5.5le-3 
9.42e-2 2.37e-2 5.93e-3 
3.44e-2 7.71e-3 1.91e-3 

# 57 71 86 92 
e 0.69 0.74 0.78 0.79 

25 

order 
2 
2 
2 
2 
2 

Number of CG iterations and average reduction 
factors for solving the system 

(1 + S2~1)~2,h = h2,h; b = 0.55. 

h2 
h b/16 b/32 b/64 b/128 

l/16 11, 0.21 12, 0.26 13, 0.30 13, 0.30 
l/32 12, 0.30 15, 0.39 15, 0.39 15, 0.39 
l/64 10, 0.22 14, 0.36 16, 0.39 15, 0.39 

l/128 9, 0.21 11, 0.27 15, 0.38 16. 0.40 
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5.2. Mixed & mixed discretization tests 

The same test problem, now discretized by a hybrid 
mixed method. As described above one reduces the 
coupled system to (7), i.e., 

U+ElS2)QJ*n1= %92X*, 

where X*=-u!&n2-u(:h.nl. 7 7 

We write the resulting linear system in tern& of the 
normal trace of the discrete solution, i.e., u~,~cII~, 

(~+&~2)ulh'nl=rhsl h > 7 
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We used the CG method applied to (8) in the inner 
product < l ,- >* so that I + El& is symmetric 
and positive definite in that inner product. The 
stopping criterion: until relative residual is reduced 
by a factor lo-? 

Error and iteration counts for problem (8); 
b- 0.55. 

hl = l/l6 hl=1/32 hl= l/64 hl= l/128 z 
h2 = b/16 h2 = b/32 h2 = b/64 h2 = b/64 order 

b/2 0.1601 3.97e-2 9.89e-3 2.47e-3 2 
60 0.9016 0.2341 6.38e-2 1.59e-2 2 
# 6 7 8 8 
e 0.08 0.11 0.15 0.17 
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The second test is for the reduced problem (8) with 
a random rhs; h. 7 

Number of CG iterations and average reduction 
factors for solving the system 

(I+ ElS2)X; h = rhs; h; I> = 0.55. > > 

h 
l/16 
l/32 
l/64 

l/128 

i h2 
b/16 b/32 

6, 0.08 7, 0.09 
7, 0.10 7, 0.13 

10, 0.22 9, 0.19 
11, 0.21 11, 0.26 

b/64 b/128 
7, 0.13 7, 0.13 
8, 0.16 8, 0.17 
8, 0.17 9, 0.18 
9, 0.20. 8, 0.16 
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